Knockout de xenes

Un rato knockout (esquerda) utilizado como modelo para estudar a obesidade, comparado cun rato normal.

A técnica do knockout de xenes[1] (ou tamén knock-out de xenes) é unha técnica xenética que consiste en suprimir a expresión dun xene específico nun organismo (un rato, unha planta, un lévedo...), substituíndo o xene orixinal no seu locus por unha versión modificada do mesmo, á que se lle extraeu un ou varios exóns para xerar unha versión non funcional, que non pode producir a proteína que codificaba o xene orixinal.[2][3] Desta forma, obtéñense organismos que non expresan o xene diana nun tecido específico ou no organismo completo, e que se denominan organismos knockout ou knockouts, como é o caso dos ratos knockout. Os organismos knockout son os modelos preferidos á hora de estudar a función dun xene.

En 2007, Mario Capecchi, Martin Evans, e Oliver Smithies obtiveron o Premio Nobel de Fisioloxía ou Medicina polo desenvolvemento de técnicas de modificación xenética específicas e tecnoloxía de células nai embrionarias de rato (células ES) que, combinadas, permitiron a xeración dos ratos knockout. A análise destes animais mutantes revolucionou a elucidación da función dos xenes, e estes ratos demostraron ser un valioso modelo para o estudo de numerosas doenzas humanas.[4][5][6][7][8][9][10][11][12]

  1. Coordinadores: Jaime Gómez Márquez, Ana Mª Viñas Díaz e Manuel González González. Redactores: David Villar Docampo e Luís Vale Ferreira. Revisores lingüísticos: Víctor Fresco e Mª Liliana Martínez Calvo. (2010). Dicionario de bioloxía galego-castelán-inglés. (PDF). Xunta de Galicia. p. 105. ISBN 978-84-453-4973-1. 
  2. Capecchi MR. Altering the genome by homologous recombination. Science 1989 Jun 16;244(4910):1288-92 [1]
  3. Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989 5: 70–76 [2]
  4. Houdebine L (2007). "Transgenic animal models in biomedical research". Methods Mol Biol 360: 163–202. PMID 17172731.  [3]
  5. Green JE, Hudson T. The promise of genetically engineered mice for cancer prevention studies. Nat Rev Cancer 2005 Mar;5(3):184-98 [4]
  6. McCormack E, Bruserud O, Gjertsen BT. Review: genetic models of acute myeloid leukaemia. Oncogene 2008 Jun 19;27(27):3765-79 [5]
  7. Øvlisen, K.; Kristensen, A. T.; Tranholm, M. (2008-3). "In vivo models of haemophilia – status on current knowledge of clinical phenotypes and therapeutic interventions". Haemophilia (en inglés) 14 (2): 248–259. ISSN 1351-8216. doi:10.1111/j.1365-2516.2007.01636.x. 
  8. Boehncke WH, Schön MP. Animal models of psoriasis. Clin Dermatol. 2007 Nov-Dec;25(6):596-605 [6]
  9. Chen D, Zhao CM.Genetically engineered mice: a new paradigm to study gastric physiology. Curr Opin Gastroenterol. 2007 Nov;23(6):602-6 [7]
  10. Lacroix-Fralish ML, Ledoux JB, Mogil JS. The Pain Genes Database: An interactive web browser of pain-related transgenic knockout studies. Pain 2007 Sep;131(1-2):3.e1-4 [8]
  11. Takao K, Yamasaki N, Miyakawa T. Impact of brain-behavior phenotypying of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res. 2007 Jun;58(2):124-32 [9] Arquivado 04 de outubro de 2008 en Wayback Machine.
  12. Fievet C, Fruchart JC, Staels B. Genetically-engineered animals as research models for atherosclerosis: their use for the characterization of PPAR agonists in the treatment of cardiometabolic disorders. Front Biosci. 2007 May 1;12:4132-56 [10]

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne